

"INNOVATION is our Business"

Optisch- und elektrochemischaktive Nanobeschichtungen

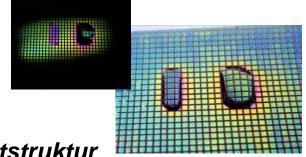
DAS ERFOLGREICHSTE
KOOPERATIONSPROJEKT

Funktionale Oberflächen

OPTISCH-AKTIVE NANOBESCHICHTUNGEN

"STRUKTUR" – Farben

"MOLECULAR STRUKTUR & ASSEMBLY"


Eine Technologie um molekulare Struktur in Farbe zu verwandeln.

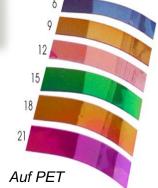
SMARTE Nanofarben

Hoch-resonante molekular-dünne Vielschichtstruktur

Effekt verwandt dem Aufbau von Schmetterlingsflügeln.

Zeigt die Fähigkeit Licht in einer einzigartigen Weise zu absorbieren bzw. zu reflektieren.

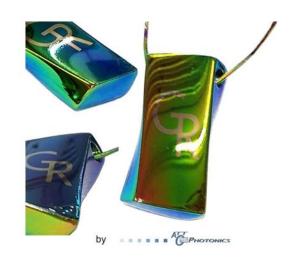
- Basiert auf der Interferenz von Nano-Kolloidschichten
- Studien der optischen Eigenschaften an der K. F. University, Graz, Ö
- Chemische Technologie Universität Wien (AT)
- Materialwissenschaften an der TUDELFT (NL)
- Produktionstechnologie entwickelt durch Attophotonics
- ATTOPHOTONICS-Produkts seit 2004



RESONANTE FARBEN

- Auf jeder Oberfläche
- Weites Farbspektrum bei identer Chemie
- Smartes metallisches Erscheinungsbild
- Sichtbare und unsichtbare Elemente
- Maschinen-lesbar
- Extreme thermische Stabilität bis 1000°C
- Kein Ausbleichen!!!
- Winkel-abhängig

Direkt auf Metall

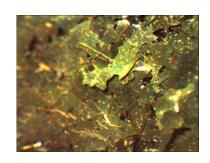

Glitter

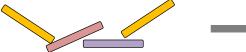
RESONANT COLORS SURFACES

Österreichischer FFG AWARD

für NANOTECHNOLOGIE

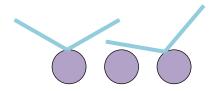
gefertigt durch ATTOPHOTONICS

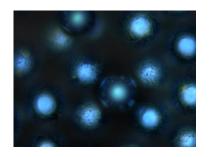




SMARTE Farbpigmente

Plättchen:


- planare Ausrichtung essentiell
- Winkel-abhängige Farbe möglich

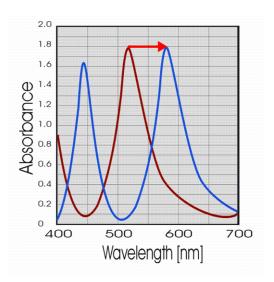


Kugeln:

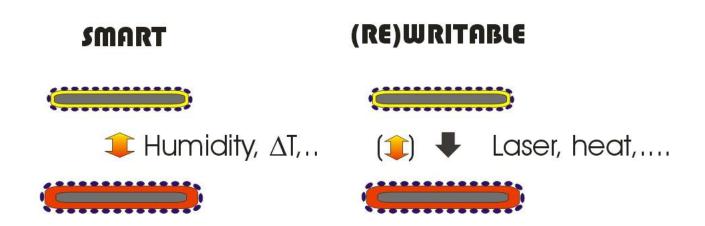
- Ausrichtung nicht notwendig
- Keine Winkel-abhängige Farbe sondern allenfalls Farbringe

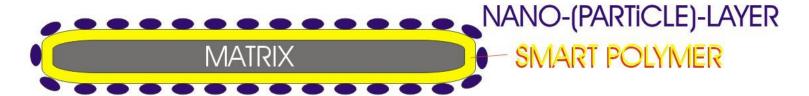
SMARTE Farbpimente

Winkel-abhängig


sensorisch

magnetisch





Smarte Farben

SENSORIK

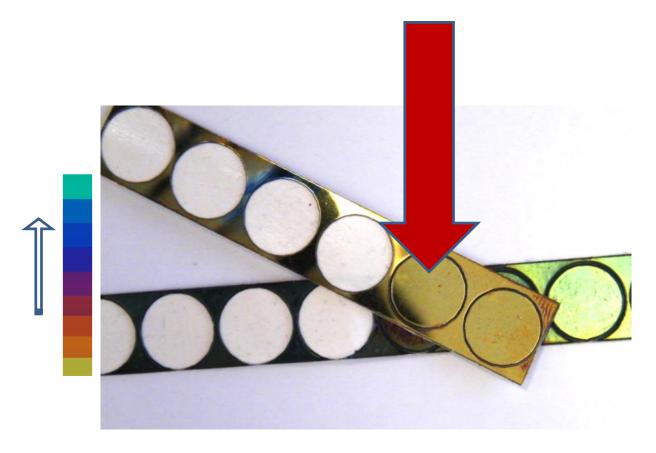
DIAGNOSTIK

SICHERHEITSTECHNIK

STERILE OBERFLÄCHEN

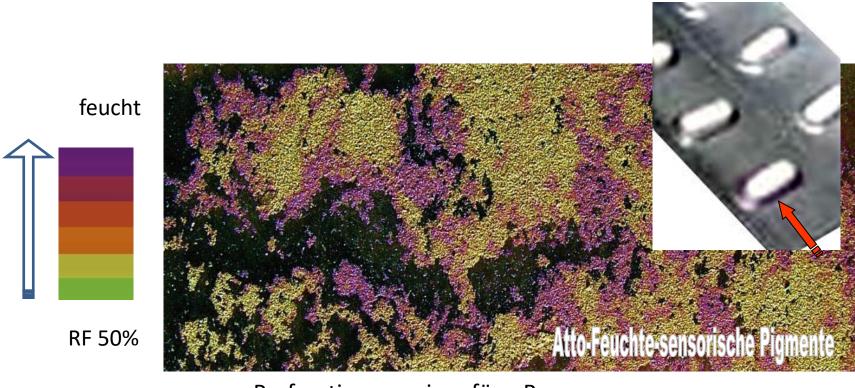
BAUTECHNIK

DESIGN....


Feuchte-reaktive Farben

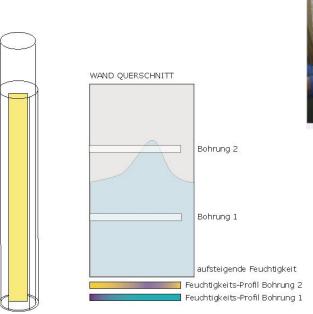
Variante 1

VIDEO

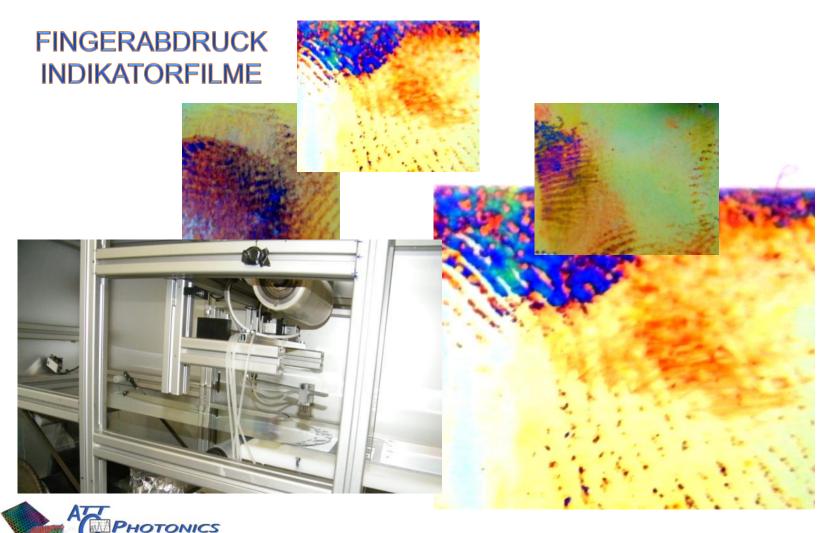


Abziehbare Sensoren auf Streifen (mit Schutzfilm) für die Anwendung in Produktion und Verpackung.

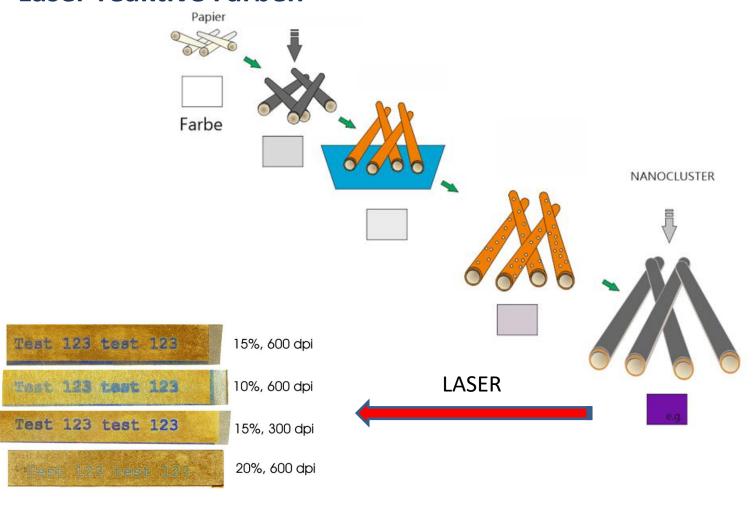
Pharmaka in Blisterverpackung



Feuchte Gipskartonplatte



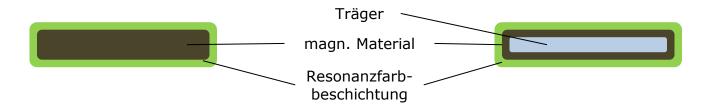
Feuchteprofil in einer Wand


Laser-reaktive Farben

Variante 4

SETUP	1	2	3	4
	<u> </u>			<u>×</u> 61
NANO Struktur	NANO-RARTICLE-LAYER MATRIX SMART POLYMER	NANO-PARTICIE-LAYER MATRIX SMART POLYMER	NANO-(RARTICLE)-LAYER MATRIX SMART POLYMER	NANO-(PARTICLE)-LAYER MATERIX SMART POLYMER

Laser-reaktive Farben



MAGICFLAKES – Magnetischer Glitter

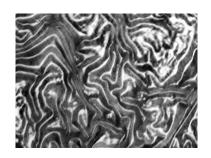
- "Hot topic" (Vielzahl internationaler Patente)
- Technologie
 - Magnetischer Träger oder
 - Magnetisch-beschichteter Träger

- Vorteile:
 - Dispersion in Lacken → magnetische Farben
 - Aktiv-orientierbar im magnetischen Feld
 - Maschinen-lesbar
 - → Zufalls- oder gewählter Code

Funktionale Oberflächen

SMARTE & ELEKTROCHEMISCH-AKTIVE NANOBESCHICHTUNGEN

SMARTE OBERFLÄCHEN


- Oberflächentechnologie +
- Lacksynthese und Applikation +
- Gedruckte Elektronik +
- Nanoproduktion (Filme und Nanofasern)
- •

ATTOPHOTONICS NANO-DESIGN OBERFLÄCHEN

DESIGN via

- Mikrorauheit
- Hydrophobe Eigenschaften
- Optimierter Brechungsindex
- Nanoporen
- Leitende Polymere
- Antifingerprint

ATTOPHOTONICS

NANOLACKE

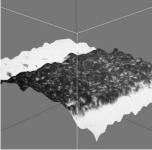
NANO-COMPOUND
MATERIALIEN
Durch Addition von
Nanopartikeln werden die
mechanischen
Eigenschaften des Lacks
z.B. (Härte, Kratzfestigkeit,
Mikroprofil der Kratzer,..)
signifikant verbessert
ohne dabei die Farbe,
Glanz oder Transparenz
negativ zu beeinflussen.

Standardbeschichtung

nano-modifiziert

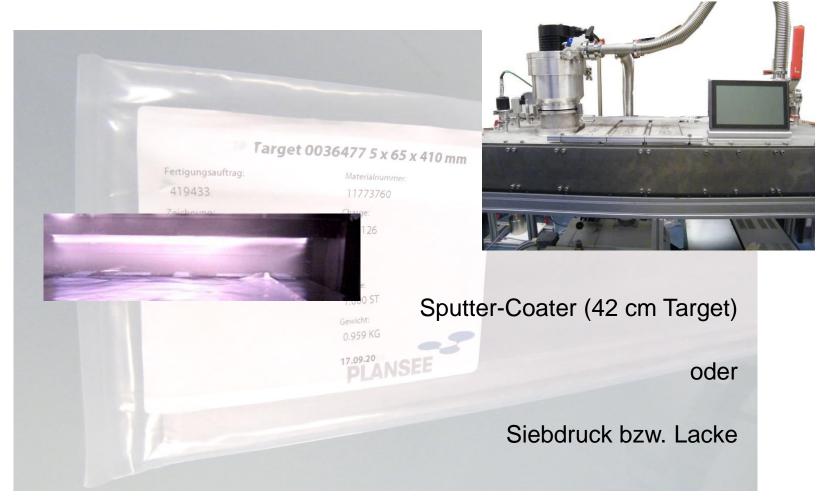
ATTOPHOTONICS Gedruckte ELECTRONIK

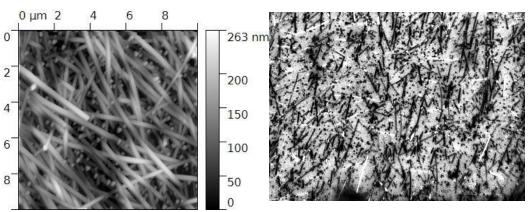
Technischer SIEBDRUCK ist eine leistungsfähige Technologie.

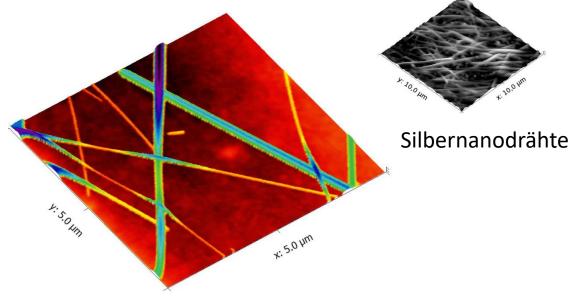

Sie wird bei Attophotonics zur Fertigung von

- · Bildschirmen (Displays),
- flexible Elektronik (z.B. OLEDs) und
- Sensoren

verwendet.




OBERFLÄCHEN- & NANOTECHNOLOGIE – Leitende Beschichtungen



NANOTECHNOLOGIE – Metall & Kohlenstoff NANOFASERN

Pilotplant für die Produktion im Bereich Nanomaterialien

AKTIV SELBST-DESINFIZIERENDE OBERFLÄCHEN

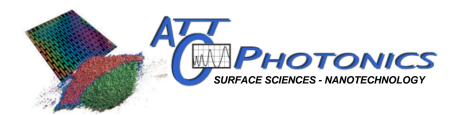
- Neue Optionen und Strategien für antimikrobielle Oberflächen zur Sicherstellung von hygienischen Standards.
- Alternativen zu antimikrobielle Oberflächen durch den Einsatz von Bioziden, antiadhäsive Oberflächen bzw. einer "bakteriophoben" Oberflächenchemie (z.B. Polyamine).
- Vermeidung der permanenten Freisetzung von Chemikalien (neue Freisetzungsverordnung!)

→ Einsatz physikalischer und elektrochemischer Wirkungsmechanismen

DEVELOPMENT

COIN CONSORTIUM E-Lyse

Attophotonics (Technologie-, Prozess-, Produktentwicklung: elektrochemische Effekte)


InoCon (physikalische Wirkungsmechanismen, innovative Konzepte Desinfektion)

Knauf AMF (Deckengestaltung, Anwender)

OFI (antimikrobielle Wirksamkeit, Toxikologie)

HYGline® GmbH (Experte für Hygiene, Chemie Desinfektionsmittel)

Viktor-Kaplan Straße 2 2700 Wiener Neustadt Austria

Tel: +43-2622-23495 Fax: +43-2622-23604

E-mail: <u>Mail@attophotonics.com</u> www: <u>www.attophotonics.com</u>

Additional Sites:

AT-2811 Wiesmath AT-2534 Alland

Attophotonics History:

1986 University of Vienna (AT)

1996 APART - AWARD

1999 TU Delft (NL)

1999 Attophotonics Germany (DE)

2004 Attophotonics Austria (AT)

Thomas SCHALKHAMMER *Univ. Doz. Mag. Dr.*CEO Attophotonics

